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Abstract

We present independent self-dual equational bases of arbitrarily
large finite sizes for the equational theory of groups treated as vari-
eties of various well-known types. Here the dual of a term f is the
mirror reflection of f . For each type of group theory, we provide an
independent self-dual basis with n identities for n = 2, 3, 4. Then
we develop a simple algorithmic procedure to construct independent
self-dual equational bases of arbitrary finite sizes in such a way that
the new larger equational bases depend explicitly on the initial bases
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of small sizes. Applying this “expansion” procedure, we show that
every finitely based variety of groups can be defined by an indepen-
dent self-dual set of n identities for all n ≥ 2. Apart from generalizing
the various theorems of Alfred Tarski who initiated this topic in the
late 1960s, these proofs also provide explicitly the bases and hence
may be construed as the first constructive proof of Tarski’s theorems
as well.

2000 Mathematics Subject Classification: 20A05, 68T15, 08B05.
Key words and phrases : self-dual bases, group theory spectra, automated
theorem proving.

The view has become more and more common that the
deductive method is the only essential feature by means
of which the mathematical disciplines can be distinguished
from all other sciences; not only is every mathematical
discipline a deductive theory, but also, conversely, every
deductive theory is a mathematical discipline.

Alfred Tarski

1 Introduction

Let K be a finitely based equational theory. Following Alfred Tarski [7, 8],
we denote by ∇(K) the set of cardinalities of irredundant equational bases
of K. More precisely,

∇(K) = {n | K has an independent basis with n identities}.

Tarski has shown that if K satisfies an equation of the form f = x where
f has at least two occurrences of variables, then ∇(K) is an unbounded
interval of positive integers. This we call Tarski’s unbounded theorem. For
such varieties, Tarski has further shown that if m and n belong to the set
∇(K), then every integer between m and n also belongs to ∇(K). This we
call Tarski’s interpolation theorem.

Analogs of Tarski’s theorems do not necessarily hold, however, when
syntactic constraints are placed on the the equations of the basis. For
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example, D. Kelly and R. Padmanabhan [2] showed a variety of algebras
definable by an independent syntactically constrained basis with 2 and 4
identities, but having no such basis with 3 identities. The constraint for the
example is that the basis is self-dual with respect to meet and join. In this
paper we consider a natural self-duality constraint for group theory (GT)
equations and prove analogs of Tarski’s theorems.

Let us view GT, the equational theory of groups, as of type 〈2, 1〉 (or
of type 〈2, 1, 0〉) with binary multiplication, say ·, unary inverse, say ′,
and possibly nullary e. The dual of the term x · y, written x̃ · y, is, by
definition, the term ỹ · x̃; for inverse, x̃′ is x̃ ′; the duals of e and variables are
themselves. Thus, for example, the dual of the composite term x · (z′ · (e · t))
is ((t · e) · z′) · x. In other words, f̃ is just the mirror reflection of the term
f . Since the transpose of a group is also a group, the class of all groups is
self-dual in this model-theoretic sense. So if an identity f = g is valid in all
groups, then its dual identity f̃ = g̃ must also be valid in all groups. Let
us call a set of identities Σ self-dual if f = g ∈ Σ ⇒ f̃ = g̃ ∈ Σ (modulo,
perhaps, renaming of variables and flipping the equality). In particular, an
identity σ is self-dual if σ is the same as σ̃. For example, the associative
law (xy)z = x(yz) is self-dual because its mirror image is (zy)x = z(yx),
which is, of course, the associative law itself.

In spite of an abundance of different axiomatic approaches to group
theory, no independent equational basis that is also self-dual was previously
known to exist. In addition to providing one such basis for every finitely
based variety of GT, we prove the self-dual analogs of Tarski’s unbounded
and interpolation theorems for group theory. In particular, we show that
∇sd(K) = [2, ω) for all group theories K under various treatments, where
now ∇sd(K) denotes the set of all cardinalities of irredundant and self-dual
equational bases of K. Additionally, we mention some open problems.

Tarski’s original 1975 proof is topological and hence existential in nature.
In sharp contrast, the proof presented here is completely constructive, and
the equational bases of larger sizes depend explicitly on the initial equational
axioms. Thus, these irredundant equational bases may be construed as the
first constructive proofs of Tarski’s original theorems.

Related work can be found in [6], where it was shown that Boolean
algebras, distributive lattices, and modular lattices all have independent
self-dual bases. In [2] it is shown that every finitely based self-dual variety
of lattices has an independent self-dual basis with n identities for all n ≥ 4.
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In [5] we presented several of the 2-, 3-, and 4-bases on which this work is
based.

2 Self-Dual Equational Bases for GT

We begin by providing an independent self-dual 2-basis for GT.

Theorem 1. The pair of equations

((xy)z)(yz)′ = x
(xy)′(x(yz)) = z

(A)

constitute a minimal self-dual basis for group theory.

Proof. Let xy = uy. Then x = ((xy)z)(yz)′ = ((uy)z)(yz)′ = u. Thus,
by duality, we have both cancellation laws. Now substitute x = t(yz)′ in
the first member of (A). Cancelling the common term (yz)′ on the right,
we obtain ((t(yz)′)y)z = t (1), and hence the algebra is a quasigroup, that
is; given a and b, the equation xa = b is soluble uniquely and dually (i.e.,
ay = b is soluble uniquely). Plugging t = yz in (1) and cancelling z, we get
((yz)(yz)′)y = y. Since we have a quasigroup, given y, we choose z such that
yz = t. This choice is possible by the dual of (1). Notice that the variable y
remains untouched in this process. Thus we have (tt′)y = y. So the element
(tt′) is independent of t (i.e., tt′ = uu′ = e, say). Hence we have both an
identity element and the inverse property. Moreover, by cancellation, t′′ = t.
All we have to do now is to derive associativity. We substitute z = e in
the original equation of (A) to obtain (xy)y′ = x. Finally, postmultiplying
the first equation of (A) by (yz)′′ = (yz), we get the desired associative law
(xy)z = x(yz). See the appendix for an automated proof obtained by the
theorem-proving program Otter [3]. Independence is clear because xy = x
(left projection) models the first axiom in (A) but not the second.

Corollary 1. A minimal self-dual basis for the theory of Abelian groups is

(x(yz))(zx)′ = y
(xy)′((yz)x) = z.

(AG)

Proof. By Theorem 1, it is enough if we derive the commutativity from
(AG). This derivation is straightforward. For completeness, we have in-
cluded in the appendix a formal proof obtained by Otter for commutativ-
ity. The rest follows from Theorem 1.
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Independence: Define xy = ix − y and x′ = x in complex numbers.
Then the first axiom in (AG) is valid, but “·” is not commutative, and
hence the first one does not imply the second axiom. By duality, (AG) is
an independent basis for the theory of all Abelian groups.

See Tables 3 and 2 of Section 5 for 3-bases and 4-bases for GT and AG.

2.1 Automated Search for an Independent Self-Dual
2-Basis for GT

The sought-after system was in terms of product and inverse. Every such
system for group theory must have an equation with at least three variables,
an equation with a just variable on one side, and an equation with inverse,
and each variable must have an even number of occurrences. Hence the
smallest candidates have the form t(x, y, z) = z, where t(x, y, z) has one
occurrence of inverse, two occurrences each of x and y, and one occurrence
of z. Exactly 30 group identities (15 pairs of duals) have these properties
(five associations each of x(yx)′yz = z, (xy)′xyz = z, and xy(xy)′z = z
and their duals). An Otter search was run on each of the 15 candidate
systems, and three were found axiomatize group theory. Each basis is inde-
pendent. Systems for Abelian groups must also satisfy the above syntactic
properties, and the same lower bound on the size applies. In this case, there
are 120 Abelian group identities (60 candidate pairs). (All associations (5)
of all permutations (24) of {x, y, (xy)′, z} set equal to z, which includes du-
als.) Rather than run the analogous Otter searches on the 60 candidate
pairs, we simply took system (A) for ordinary groups and ran several Ot-
ter searches with various corresponding terms commuted. On the second
search, the self-dual system for Abelian groups was found.

2.2 Groups as Birkhoff Quasigroups (BQ)

We conclude this section by giving a quasigroup approach to GT [1, p. 163].
This is based on the well-known fact that associative quasigroups are just
groups. Consider algebras of type 〈2, 2, 2〉 with three binary operations x ·y,
x/y, x\y, where

x · y is group multiplication
x/y = x · y′ is right division
x\y = x′ · y is left division.
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The duality map is given by x/y ↔ y\x and x · y ↔ y · x.
We exploit the self-dual identity x/(y\z) = (z/x)\y connecting the two

divisions. This identity is due to Garrett Birkhoff. For this reason, we call
this the Birkhoff identity and the variety as Birkhoff quasigroups (BQ).

Theorem 2. A quasigroup 〈G; /, ·, \〉 satisfying the self-dual Birkhoff iden-
tity x/(y\z) = (z/x)\y is a group with · as group multiplication, x/y = x ·y′

and x\y = x′ · y.

Proof. Consider the following Otter derivation.

2 y(y\x) = x [axiom]
3 (x/y)y = x [axiom]
4 y\(yx) = x [axiom]
5 (xy)/y = x [axiom]
6 x/(y\z) = (z/x)\y [axiom]
11,10 x/(y\x) = y [2 (1) → 5 (1.1)]
13 x/y = ((zy)/x)\z [4 (1) → 6 (1.2)]
15,14 (x/x)\y = y [10 (1) → 6 (1)]
16 (x/(y(z\x)))\z = y [5 (1) → 6 (1)]
22 ((x/y)\z)(z\x) = y [6 (1) → 3 (1.1)]
24 (x\x)\y = y [6 (1) → 14 (1.1),11]
34 x/x = y\y [24 (1) → 10 (1.2)]
38 x\x = y\y [34 (1) → 34 (1)]
45 x(y\y) = x [38 (1) → 2 (1.2)]
71 (((xy)/z)\x)y = z [13 (1) → 3 (1.1)]
75 (x/(yx))\(z/z) = y [14 (1) → 16 (1.1.2.2)]
116 (x\y)(y\z) = x\z [10 (1) → 22 (1.1.1)]
331 xy = (z/(xz))\y [75 (1) → 116 (1.1),15]
332 (x/(yx))\z = yz [331]
418 (xy)z = x(yz) [332 (1) → 71 (1.1)]

Lines 2–5 are the quasigroup properties, and line 6 is the Birkhoff identity.
Since associativity is now a consequence (as seen in line 418), we have the
full group theory. Indeed, line 34 shows that x/x = y\y (= e, say). From
line 45, we have xe = x. Finally, from line 2 we get x(x\e) = e and hence
x\e = x′. This completes the proof that x/y = xy′, the right division, and
x\y = x′y, the left division.
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See Table 4 of Section 5 for irredundant self-dual 2-bases, 3-bases, and
4-bases for BQ.

3 Tarski Theorems for Self-Dual Group Va-
rieties

In this section we develop a simple algorithmic procedure to construct inde-
pendent self-dual equational bases of arbitrary finite sizes for group theory
in such a way that the new, larger equational bases depend explicitly on
the initial bases of small sizes. The method is general enougn to apply to
any “nice” equational theory admitting absorption laws.

Theorem 3. Let K be the equational theory of algebras of type 〈2, 1〉 defined
by the self-dual pair of identities

x ∗ (x′ ∗ y) = y
(y ∗ x′) ∗ x = y.

Then 2n ∈ ∇sd(K) for all n, where ∇sd(K) is the self-dual spectrum of K,
that is,

∇sd(K) = {n | K has an independent self-dual basis with n identities}.

Let us first prove the following lemma demonstrating why 4 belongs to
∇sd(K). From this the reader can easily construct a basis with 2n identities
for all n.

Lemma 1. 4 ∈ ∇sd(K).

Proof. Consider the following self-dual set of four identities:

x ∗ (x′ ∗ (x ∗ (x′ ∗ y)))) = y (A)

x ∗ (x′ ∗ (x ∗ (x′ ∗ (x ∗ (x′ ∗ y))))) = y (B)

((((y ∗ x′) ∗ x) ∗ x′) ∗ x = y (Ã)

(((((y ∗ x′) ∗ x) ∗ x′) ∗ x) ∗ x′) ∗ x = y. (B̃)

Indeed,

x ∗ (x′ ∗ y) = x ∗ (x′ ∗ (x ∗ (x′ ∗ (x ∗ (x′ ∗ y))))) by (A)

= y by (Ã).
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Similarly, by the dual argument, we obtain (y ∗ x′) ∗ x = y. Thus these
four identities do form a basis for K. To show their independence, take an
Abelian group of exponent 6, and interpret x ∗ y = x− y and x′ = x.

Then x ∗ (x′ ∗ y) = x − (x − y) = y, and hence both (A) and (B) are
automatically valid here. Consider the meaning of (B̃) in this model:

(((((y ∗ x′) ∗ x) ∗ x′) ∗ x) ∗ x′) ∗ x = y − 6x = y − 0 = y.

Thus (B̃) is also true in this model. But (Ã) will fail because y − 4x += y,
since 4 += 0 (mod 6).

Similarly, taking an Abelian group of exponent 4 and interpreting x∗y =
x − y and x′ = x, we see (A), (Ã), and (B) are valid but (B̃) will fail. It
is now clear that these four identities are independent. Thus 4 ∈ ∇sd(K).
This completes the proof of Lemma 1.

Before going further, let us summarize what has happened: 4 and 6
are such that gcd(4, 6) = 2 and the crucial identity x ∗ (x′ ∗ y) = y has
two occurrences of x and one occurrence of y on the left-hand side while
the right-hand side has one y and no occurrences of x. Thus the identity
x ∗ (x′ ∗ y) = y tells us, in an informal sense, that “2 = 0”, and it is this
property we exploit systematically to build independent bases of arbitrarily
large sizes.

Now let us do this more formally. Define

σ(y) = x ∗ (x′ ∗ y)

σk+1(y) = σ(σk(y)) = x ∗ (x′ ∗ (σk(y))

and, dually, τ(y).

Lemma 2. (The gcd lemma.) Let Σ be a set of identities of the form
{σki(y) = y, i = 1, 2, · · · , m}. Define S(Σ) = {n|σn(y) = y ∈ Σ}. We
claim that if m, n ∈ S(Σ), then gcd(m, n) ∈ S(Σ).

Proof. Let m, n ∈ S(Σ) with, say m > n. So m = k + n for some positive
integer k. Now

y = σm(y) since m ∈ S(Σ)
= σk+n(y) since m = k + n
= σk(σn(y)) by definition of σ
= σk(y) since n ∈ S(Σ).
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This computation shows that m,n ∈ S(Σ) implies that k = m − n ∈
S(Σ). So the set S(Σ) is closed for all meaningful linear combinations of
its members. In particular, the number set S(Σ) is closed for gcd. The
equational deduction made may be seen in this numerical setup as follows.

4, 6 ∈ S(Σ) and gcd(4, 6) = 2; hence 2 ∈ S(Σ) as well.

Now let us return to the proof of Theorem 3. Let K be the equational
theory of all algebras of type 〈2, 1〉 defined by the two identities

x ∗ (x′ ∗ y) = y

(y ∗ x′) ∗ x = y.

We wish to show that K can be defined by an independent self-dual set of
n identities for all even numbers n, that is, 2n ∈ ∇sd(K) for all n ≥ 1.

The two given identities are clearly duals of each other, and projection
models demonstrate their independence. Thus 2 ∈ ∇sd(K).

To show that 2n ∈ ∇sd(K), simply choose the first n odd prime numbers
p1, p2, · · · , pn. For j = 1, 2, · · · , n define the number qj as Πpi with i =
1, 2, · · · , j − 1, j + 1, · · · , n. It is now clear that gcd(q1, q2, · · · , qn) = 1 but
no proper subset of {q1, q2, · · · , qn} has this property.

For example, let us demonstrate that 6 ∈ ∇sd(K). Here n = 3 and
q1 = 5× 7 = 35, q2 = 3× 7 = 21, and q3 = 3× 5 = 15.

We clearly have gcd(35, 21, 15) = 1, but gcd(35, 21) = 7, gcd(21, 15) = 3,
and gcd(35, 15) = 5. To show that 6 ∈ ∇sd(K), we choose the following
self-dual set Σ(6) of six identities:

Σ(6) = {σi(y) = y, τ i(y) = y | i = 35, 21, 15}.

Since 35, 21, 15 ∈ Σ(6), by the gcd lemma, we get that gcd(35, 21, 15) = 1 ∈
Σ(6). This is just a fancy way of saying that we do have the two identities
x ∗ (x′ ∗ y) = y, (y ∗ x′) ∗ x = y as consequences of Σ(6). In other words,
Σ(6) is indeed a self-dual basis for K. Independence is now obvious by
the very construction of the three numbers q1, q2, q3: to demonstrate the
independence of say, τ 15(y) = y from the remaining five identities, we take
the cyclic group Z[14] and interpret x ∗ y = x− y (mod 14), x′ = x.

In this model x ∗ (x′ ∗ y) = x − (x − y) = y, and hence all the three
“σ” identities are automatically valid. By the definition of τ , we have
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τ(y) = (y ∗ x′) ∗ x = y − 2x and τ i(y) = y − 2ix. Thus τ i(y) = y in the
group Z[14] if and only if 14 divides 2i. Now 14 divides 70 and 42 but not
30. Hence in this group model, except for τ 15(y) = y, all the other five
identities of Σ(6) are valid. This completes proof that 6 ∈ ∇sd(K).

The same argument applies to any even number: To show that 2n ∈
∇sd(K), we simply take the appropriate group models based on the integers
q1, q2, · · · , qn as defined above and interpret x ∗ y = x− y, x′ = x or x ∗ y =
x+y, x′ = −x as the case may be. We note that to prove the independence
of the various σ-identities, we need the dual group model x ∗ y = x + y,
x′ = x. The proof of Theorem 3 is now complete.

Theorem 4. 2, 3, 4 ∈ ∇sd(GT ).

Proof. Here GT is a finitely based variety of groups. Let the type be 〈2, 1〉
with group multiplication x ∗ y and group inverse x → x′. Numbers 2, 3,
and 4, are achieved by the following formal reduction schema:

for 2 :

{
((x ∗ y) ∗ (a ∗ z)) ∗ (y ∗ (a ∗ z))′ = x
((x ∗ b) ∗ y)′ ∗ ((x ∗ b) ∗ (y ∗ z)) = z

}

for 3 :






x ∗ (x′ ∗ y) = y
(x ∗ y′) ∗ y = x
((x ∗ a) ∗ y) ∗ (b ∗ z) = (x ∗ a) ∗ (y ∗ (b ∗ z))






for 4 :






x ∗ (x′ ∗ y) = y
(x ∗ y′) ∗ y = x
x′ ∗ x = y ∗ y′

((x ∗ (a ∗ y)) ∗ b) ∗ z = x ∗ (a ∗ ((y ∗ b) ∗ z))





.

Otter proofs are given in the appendix.

Now we deal with higher odd numbers.

Theorem 5. (The odd number case.) 2n + 1 ∈ ∇sd(GT ) for all n ≥ 1.

Proof. Start from the 3-basis for K, namely,

x ∗ (x′ ∗ y) = y

(x ∗ y′) ∗ y = x

((x ∗ a) ∗ y) ∗ (b ∗ z) = (x ∗ a) ∗ (y ∗ (b ∗ z)).
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Now simply blow up the first two self-dual identities x ∗ (x′ ∗ y) = y, (x ∗
y′) ∗ y = x to an even number 2n, as done in Theorem 3. By the very
construction, this new self-dual basis consisting of 2n + 1 identities does
characterize GT and is obviously independent. The same models used in
the corresponding constructions work here as well.

Theorem 6. (The even number case.) 2n ∈ ∇sd(GT ) for all n ≥ 1.

Proof. Use the four-basis

x ∗ (x′ ∗ y) = y

(x ∗ y′) ∗ y = x

x′ ∗ x = y ∗ y′

((x ∗ (a ∗ y)) ∗ b) ∗ z = x ∗ (a ∗ ((y ∗ b) ∗ z))

in the above argument and again just blow up the pair

x ∗ (x′ ∗ y) = y

(x ∗ y′) ∗ y = x

to any desired even number, say, 2n− 2. Hence the new set by adding the
last two, namely,

x′ ∗ x = y ∗ y′

((x ∗ (a ∗ y)) ∗ b) ∗ z = x ∗ (a ∗ ((y ∗ b) ∗ z)),

gives an independent self-dual basis with 2n identities.

This completes the proof of Tarski unbounded theorem for groups:
∇sd(GT ) = [2, ω).

4 Open Problems

As in the case of groups, the set of all identities true in a Moufang loop
is closed for the duality of mirror reflection. The problems are to prove
self-dual Tarski theorems for (1) the variety of all Moufang Loops and (2)
the variety of all commutative Moufang loops.

Various varieties of complemented lattice can be viewed as algebras of
type 〈2〉 with the Sheffer stroke operation. The duality here is mirror reflec-
tion. The problems are to prove self-dual Tarski theorems for the following
varieties of type 〈2〉: (3) Boolean algebras, (4) orthomodular lattices, and
(5) ortholattices.
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5 2-Bases, 3-Bases, and 4-Bases

This section contains independent self-dual bases for several group varieties
of various types. In each case, the 3-basis and the 4-basis can be used to
prove theorems similar to Theorems 5 and 6, showing that ∇sd(K) = [2, ω).

Along with each basis is listed a justification of independence of one of
the following types

1. Projection: there is a model satisfying xy = x or yx = x.

2. Dual: the dual of the preceding justification.

3. 3-variable law: a 3-variable law is required to capture associativity.

4. xy = −x− y, e.g.: Abelian group or ring countermodel.

5. n-model: the program MACE [4] found an n-element countermodel.

Table 1: Boolean Groups
Axioms Independence

2-basis ((xy)z)(yz) = x (BG2a) projection
(zy)(z(yx)) = x (BG2b) dual
y(yx) = x (BG3a) projection

3-basis (xy)y = x (BG3b) dual
(xy)z = x(yz) (BG3c) 3-variable law
y(yx) = x (BG4a) xy = y − x

4-basis (xy)y = x (BG4b) dual
xx = yy (BG4c) xy = −x− y
(xy)(zu) = (xz)(yu) (BG4d) 3-variable law
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Table 2: Abelian Groups
Axioms Independence

2-basis (y(xz))(zy)′ = x (AG2a) 3-model
(yz)′((zx)y) = x (AG2b) dual
y′(yx) = x (AG3a) xy = y − x, x′ = x

3-basis (xy)y′ = x (AG3b) dual
x((y(uu′))v) = (v((w′w)x))y (AG3c) 3-variable law
y′(yx) = x (AG4a) xy = y − x, x′ = x

4-basis (xy)y′ = x (AG4b) dual
xx′ = y′y (AG4c) xy = −x− y, x′ = x
(xy)(zu) = (xz)(yu) (AG4d) 3-variable law

Table 3: Group Theory
Axioms Independence

2-basis ((xy)z)(yz)′ = x (GT2a) projection
(zy)′(z(yx)) = x (GT2b) dual
y(y′x) = x (GT3a) projection

3-basis (xy′)y = x (GT3b) dual
(xy)z = x(yz) (GT3c) 3-variable law
y(y′x) = x (GT4a) xy = y − x, x′ = x

4-basis (xy′)y = x (GT4b) dual
x′x = yy′ (GT4c) xy = −x− y, x′ = x
((x(uy))u)z = x(u((yu)z)) (GT4d) 3-variable law

Table 4: Birkhoff Quasigroups
Axioms Independence

2-basis y(z((yz)\x)) = x (BQ2a) projection
((x/(zy))z)y = x (BQ2b) dual
y(y\x) = x (BQ3a) projection

3-basis (x/y)y = x (BQ3b) dual
(xy)z = x(yz) (BQ3c) 3-variable law
y(y\x) = x (BQ4a) xy = x/y = x\y = y − x

4-basis (x/y)y = x (BQ4b) dual
x/x = y\y (BQ4c) xy = x/y = x\y = −x− y
((x(yz))y)u = x(y((zy)u)) (BQ4d) 3-variable law
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Table 5: Ternary Groups
Axioms Independence

2-basis m(m(x,m(y, z, u), y), z, u) = x (TG2a) projection
m(u, z,m(y, m(u, z, y), x)) = x (TG2b) dual
m(y, y, x) = x (TG3a) projection

3-basis m(x, y, y) = x (TG3b) dual
m(m(x, y, z), u, v) = m(x, y, m(z, u, v)) (TG3c) 3-variable law
m(y, y, x) = x (TG4a) 4-model

4-basis m(x, y, y) = x (TG4b) dual
m(m(m(x, y, z), z, u), u, y) = x (TG4c) 3-model
m(y, u, m(u, z,m(z, y, x))) = x (TG4d) dual

Table 6: Group Theory Schema
Axioms Independence

2-basis ((xy)(αz))(y(αz))′ = x (GTS2a) projection
((zβ)y)′((zβ)(yx)) = x (GTS2b) dual
y(y′x) = x (GTS3a) projection

3-basis (xy′)y = x (GTS3b) dual
((xα)y)(βz) = (xα)(y(βz)) (GTS3c) 3-variable law

y(y′x) = x (GTS4a)
{ xy = y − x

x′ = x
α = β = 0

4-basis (xy′)y = x (GTS4b) dual

x′x = yy′ (GTS4c)
{ xy = −x− y

x′ = x
α = β = 0

((x(αy))β)z = x(α((yβ)z)) (GTS4d) 3-variable law
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Table 7: Symmetric Difference
Axioms Independence

2-basis (x#(y#z))#((u#y)#(u#z)) = x (SD2a) projection
((z#u)#(y#u))#((z#y)#x) = x (SD2b) dual
(y#y)#((z#z)#x) = x (SD3a) projection

3-basis (x#(z#z))#(y#y) = x (SD3b) dual
(x#y)#(z#u) = (x#z)#(y#u) (SD3c) 3-model
(x#((z#z)#z))#z = x (SD4a) projection

4-basis z#((z#(z#z))#x) = x (SD4b) dual
((x#x)#(x#y))#((y#x)#(x#x)) = x#x (SD4c) x#y=2x+2y+1(mod3)
(x#y)#(z#u) = (x#z)#(y#u) (SD4d) 3-variable law

Table 8: Symmetric Difference Schema
Axioms Independence

2-basis (x#((y#z)#(y#((z#α)#v))))#v = x (SDS2a) projection
v#((((v#(β#z))#y)#(z#y))#x) = x (SDS2b) dual
(y#y)#(α#x) = x (SDS3a) projection

3-basis (x#β)#(y#y) = x (SDS3b) dual
(x#y)#(z#u) = (x#z)#(y#u) (SDS3c) 3-model
(x#((z#z)#z))#z = x (SDS4a) projection

4-basis z#((z#(z#z))#x) = x (SDS4b) dual

((x#x)#(x#y))#((y#x)#(x#x)) = α (SDS4c)
{x#y=2x+2y+1(mod3)
α = 0

(x#y)#(z#u) = (x#z)#(y#u) (SDS4d) 10-model

Appendix

This appendix contains Otter proofs that the axiom sets listed
in Section 5 are indeed bases for the intended theories. The
Otter input files that produced these proofs can be found at
http://www.mcs.anl.gov/~mccune/papers/tarski.

Boolean Groups (BG)

BG2

1 x = x [axiom]
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2 ((xy)z)(yz) = x [axiom]
3 (zy)(z(yx)) = x [axiom]
4 (AB)C += A(BC) | BB += AA | A(BB) += A [denial]
6 x(y(zy)) = xz [2 (1) → 2 (1.1)]
15 (x(yz))(xu) = y(zu) [3 (1) → 3 (1.2.2)]
26,25 x(y(z(yx))) = z [3 (1) → 2 (1.1)]
29 x((y(zy))(uz)) = xu [6 (1) → 6 (1.2.2)]
36 (xy)y = x [3 (1) → 6 (1)]
43 (xy)(x((z(yz))u)) = u [6 (1) → 3 (1.1)]
45 ((xy)z)((u(yu))z) = x [6 (1) → 2 (1.1.1)]
50,49 x(y(zx)) = yz [3 (1) → 36 (1.1)]
52,51 (xy)z = x(yz) [2 (1) → 36 (1.1)]
56,55 x(yy) = x [45,52,52,52,52,52,26]
57 x(y(x(z(y(zu))))) = u [43,52,52,52]
64,63 x(y(yz)) = xz [29,52,52,50]
68,67 x(y(z(xu))) = y(zu) [15,52,52]
73 BB += AA [4,52,56,1,1]
76 x(xy) = y [57,68,64]
79 xx = yy [55 (1) → 76 (1.2)]
80 ! [79.1,73.1]

BG3

1 x = x [axiom]
2 y(yx) = x [axiom]
3 (xy)y = x [axiom]
4 (xy)z = x(yz) [axiom]
5 (AB)C += A(BC) | BB += AA | A(BB) += A [denial]
6 x(yx) = y [2 (1) → 3 (1.1)]
10 xy = yx [3 (1) → 6 (1.2)]
12,11 (xy)z = y(xz) [10 (1) → 4 (1.1)]
22,21 x(yy) = x [3 (1) → 4 (1)]
23 B(AC) += A(BC) | BB += AA [5,12,22,1]
24 x(yz) = y(xz) [4,12]
27 BB += AA [24.1,23.1]
28 xx = yy [21 (1) → 2 (1.2)]
29 ! [28.1,27.1]
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BG4

1 x = x [axiom]
2 y(yx) = x [axiom]
3 (xy)y = x [axiom]
4 xx = yy [axiom]
5 (xy)(zu) = (xz)(yu) [axiom]
6 (AB)C += A(BC) | BB += AA | A(BB) += A [denial]
11 (xx)y = y [4 (1) → 3 (1.1)]
14,13 x(yy) = x [4 (1) → 2 (1.2)]
15 (AB)C += A(BC) [6,14,4,1]
53 (xy)z = x(yz) [11 (1) → 5 (1.2),14]
55 ! [53.1,15.1]

Abelian Groups (AG)

AG2

1 x = x [axiom]
2 (y(xz))(zy)′ = x [axiom]
3 (yz)′((zx)y) = x [axiom]
4 BB′ += AA′ | A(BB′) += A | (AB)C += A(BC) |

BA += AB [denial]
5 (xy)((zu)′x)′ = u(yz) [2 (1) → 2 (1.1.2)]
14 (x(y(zu)))′(zx) = (uy)′ [2 (1) → 3 (1.2.1)]
15 ((xy)′y)′z = zx [2 (1) → 3 (1.2)]
18 xy = ((yz)′z)′x [15]
21 x(y(yz)′)′ = zx [3 (1) → 2 (1.1)]
29 ((xy)(zx)′)z = y [3 (1) → 15 (1)]
90 ((((xy)′y)′z)(uz)′)u = x [18 (1) → 29 (1.1.1)]
120 x((yx)′(zy)) = z [2 (1) → 21 (1)]
131 (x((yx)′z))y = z [21 (1) → 29 (1.1)]
224 (x(y(zx)′))z = (u(uy)′)′ [21 (1) → 131 (1.1.2)]
225 (x(((yz)′z)′(ux)′))u = y [18 (1) → 131 (1.1.2)]
236,235 ((xy)′y)′ = x [2 (1) → 131 (1)]
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237 (x(xy)′)′ = (z(y(uz)′))u [224]
243,242 (x(y(zx)′))z = y [225,236]
275 ((xy)(zy)′)z = x [90,236]
288 xy = yx [18,236]
290,289 (x(xy)′)′ = y [237,243,flip.1]
291 BB′ += AA′ | A(BB′) += A | (AB)C += A(BC) [288.1,4.4]
359 ((xy)′x)′ = y [288 (1) → 235 (1.1.1.1)]
361 (x′y)′ = z((yz)′x) [131 (1) → 235 (1.1.1.1)]
372 x((yx)′z) = (z′y)′ [361]
382,381 (xy)z = x(yz) [235 (1) → 5 (1.2)]
440 BB′ += AA′ | A(BB′) += A [291,382,1]
445 x(y((zy)′z)) = x [275,382,382,382]
531 (x′y)′ = (zy)′(xz) [120 (1) → 359 (1.1.1.1)]
533 (xy)′(zx) = (z′y)′ [531]
541 x′(xy) = y [120 (1) → 14 (1.1.1),290]
578 x′(yx) = y [288 (1) → 541 (1.2)]
581,580 (xy)′(zx) = y′z [120 (1) → 541 (1.2)]
596,595 (x′y)′ = y′x [533,581]
607 x(x′y) = y [120,581]
686,685 x((yx)′z) = y′z [372,596]
704 x(y′y) = x [445,686]
717,716 x(yy′) = x [288 (1) → 578 (1),382]
720 BB′ += AA′ [440,717,1]
806 B′B += AA′ [288 (1) → 720 (1)]
827 xx′ = y′y [704 (1) → 607 (1.2)]
829 x′x = yy′ [827]
830 ! [829.1,806.1]

AG3

1 x = x [axiom]
2 y′(yx) = x [axiom]
3 (xy)y′ = x [axiom]
4 x((y(uu′))v) = (v((w′w)x))y [axiom]
5 BB′ += AA′ | A(BB′) += A | (AB)C += A(BC) |

BA += AB [denial]
6 x′′y = xy [2 (1) → 2 (1.2)]
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11,10 x(yx)′ = y′ [2 (1) → 3 (1.1)]
15,14 x(x′y) = y [2 (1) → 6 (1)]
19,18 x′′ = x [14 (1) → 3 (1.1),11]
21,20 (xy′)y = x [18 (1) → 3 (1.2)]
23 x(yz) = (z((u′u)x))y [14 (1) → 4 (1.2.1),19]
28 (x((y′y)z))u = (x((v′v)z))u [4 (1) → 4 (1)]
32 (x((y′y)z))u = z(ux) [23]
48,47 (xy)′ = y′x′ [3 (1) → 10 (1.2.1)]
63 (x(y′z′))(zy) = x [47 (1) → 20 (1.1.2)]
65 (xy)((y′x′)z) = z [47 (1) → 14 (1.2.1)]
69 (x′y′)((yx)z) = z [47 (1) → 2 (1.1)]
78,77 (x(y′z))(z′y) = x [18 (1) → 63 (1.1.2.2)]
81 (x((y′z)z′))y = x [14 (1) → 63 (1.2),48,19]
85 x((y′(yx′))z) = z [20 (1) → 65 (1.1),48,19]
154 x((yz)z′) = xy [81 (1) → 81 (1.1),48,19,48,19,15]
174 (x′((y′y)z))(ux) = zu [3 (1) → 23 (1.2)]
237,236 (x′(xy))z = yz [85 (1) → 85 (1.2),48,48,19,19,21]
238 ((xy)y′)z = xz [154 (1) → 236 (1.1.2),237]
258,257 (x((y′y)z))u = (xz)u [20 (1) → 28 (1.1.2),19]
262 ((x′x)y)z = yz [69 (1) → 28 (1.1),19,258]
337,336 (x′y)(zx) = yz [174,258]
375 (xy)z = y(zx) [32,258]
451 (xx′)y = (z′z)y [262 (1) → 238 (1.1)]
454,453 (x′x)y = y [262 (1) → 77 (1.1),78]
457 (xx′)y = y [451,454,flip.1]
461 x(yx′) = y [375 (1) → 453 (1)]
504 xx′ = yy′ [457 (1) → 77 (1.1),337]
518 A(BB′) += A | (AB)C += A(BC) | BA += AB [504.1,5.1]
522 xy = yx [20 (1) → 461 (1.2),19]
524,523 x(yy′) = x [457 (1) → 461 (1),48,19]
530 (AB)C += A(BC) [522.1,518.3,524,1]
560 x(yz) = y(zx) [375 (1) → 522 (1)]
603 C(AB) += A(BC) [522 (1) → 530 (1)]
604 ! [603.1,560.1]
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AG4

1 x = x [axiom]
2 y′(yx) = x [axiom]
3 (xy)y′ = x [axiom]
4 xx′ = y′y [axiom]
5 (xy)(zu) = (xz)(yu) [axiom]
6 BB′ += AA′ | A(BB′) += A | (AB)C += A(BC) |

BA += AB [denial]
7 x′′y = xy [2 (1) → 2 (1.2)]
10,9 xy′′ = xy [3 (1) → 3 (1.1)]
12,11 x(yx)′ = y′ [2 (1) → 3 (1.1)]
17,16 (x′x)y = y [4 (1) → 3 (1.1),10]
25 x(x′y) = y [2 (1) → 7 (1)]
31 x(yz) = y(xz) [16 (1) → 5 (1.1),17]
38 (xy)z = (x(u′u))(yz) [16 (1) → 5 (1.2)]
47 (x(y′y))(zu) = (xz)u [38]
56 x(y′y) = x′′ [4 (1) → 25 (1.2)]
59 x′′ = x(y′y) [56]
63,62 x′′ = x [25 (1) → 3 (1.1),12]
67,66 x(y′y) = x [59,63]
71,70 (xy)z = x(yz) [47,67]
92 BB′ += AA′ | A(BB′) += A | BA += AB [6,71,1]
95,94 x(yy′) = x [3,71]
96 BB′ += AA′ | BA += AB [92,95,1]
105 xx′ = yy′ [94 (1) → 25 (1.2)]
106 BA += AB [105.1,96.1]
109 xy = yx [94 (1) → 31 (1.2),95]
110 ! [109.1,106.1]

Group Theory (GT)

GT2

1 x = x [axiom]
2 ((xy)z)(yz)′ = x [axiom]
3 (zy)′(z(yx)) = x [axiom]
4 BB′ += AA′ | A(BB′) += A | (AB)C += A(BC) [denial]
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5 (xy)((zu)′y)′ = (xz)u [2 (1) → 2 (1.1.1)]
6 x(y(zy)′)′ = xz [2 (1) → 2 (1.1)]
8 ((x((yz)u))(zu)′)y′ = x [2 (1) → 2 (1.2.1)]
18,17 (x((yz)u))′(xy) = (zu)′ [2 (1) → 3 (1.2.2)]
30,29 x((yz)′u′)′ = x((uy)z) [2 (1) → 6 (1.2.1.2.1)]
33 ((xy)(zy)′)z = x [2 (1) → 6 (1)]
54 ((x(yz)′)y)z = x [6 (1) → 33 (1.1)]
62 (x(yx)′)′ = y [33 (1) → 3 (1.2.2),18]
75,74 (((xy)z)u)v = x(((yz)u)v) [2 (1) → 5 (1.1),30]
106 ((xy)′x)′ = y [62 (1) → 62 (1.1.2)]
110,109 x(y((xy)′z)) = z [62 (1) → 3 (1.1)]
119 x((yx)′(yz)) = z [106 (1) → 3 (1.1)]
206 x((yy′)z) = xz [8 (1) → 54 (1.1)]
257 ((x((yz)((uz)′(uv))))v′)y′ = x [119 (1) → 8 (1.1.2.1)]
284 x(((yy′)x)′z) = z [206 (1) → 119 (1.2)]
287,286 (xx′)y = y [206 (1) → 109 (1.2.2),110]
290 x′(xy) = y [206 (1) → 3 (1),287]
295,294 x(x′y) = y [284,287]
308 xx′ = yy′ [286 (1) → 8 (1.1.1),75,287]
329 A(BB′) += A | (AB)C += A(BC) [308.1,4.1]
337,336 x′′y = xy [290 (1) → 290 (1.2)]
339,338 (xy)′(xz) = y′z [119 (1) → 290 (1.2)]
350,349 (xy)z = x(yz) [3 (1) → 290 (1.2),337]
358,357 x(yy′) = x [257,339,350,295,350,350,350,350,350,295]
370 ! [329,358,350,1,1]

GT3

1 x = x [axiom]
2 y(y′x) = x [axiom]
3 (xy′)y = x [axiom]
4 (xy)z = x(yz) [axiom]
5 BB′ += AA′ | A(BB′) += A | (AB)C += A(BC) [denial]
8 xy′′ = xy [3 (1) → 3 (1.1)]
18 (xy)y′ = x [8 (1) → 3 (1.1)]
39,38 x(yy′) = x [4 (1) → 18 (1)]
40 BB′ += AA′ [5,39,1,4]
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66 xx′ = yy′ [38 (1) → 2 (1.2)]
67 ! [66.1,40.1]

GT4

1 x = x [axiom]
2 y(y′x) = x [axiom]
3 (xy′)y = x [axiom]
4 x′x = yy′ [axiom]
5 ((x(uy))u)z = x(u((yu)z)) [axiom]
6 BB′ += AA′ | A(BB′) += A | (AB)C += A(BC) [denial]
11 xx′ = yy′ [4 (1) → 4 (1)]
12 A(BB′) += A | (AB)C += A(BC) [11.1,6.1]
13 (xx′)y = y′′ [4 (1) → 3 (1.1)]
15,14 x(yy′) = x [4 (1) → 2 (1.2)]
16 x′′ = (yy′)x [13]
17 (AB)C += A(BC) [12,15,1]
22,21 x′′ = x [2 (1) → 14 (1)]
25,24 (xx′)y = y [16,22]
29,28 (xy′)z = x(y′z) [4 (1) → 5 (1.1.1.2),15,25]
33,32 (xy)′(x((yx)z)) = xz [4 (1) → 5 (1.1.1),25]
34 (xy)z = x(yz) [3 (1) → 5 (1.1.1),29,33]
36 ! [34.1,17.1]

Birkhoff Quasigroup (BQ)

BQ2

1 x = x [axiom]
2 y(z((yz)\x)) = x [axiom]
3 ((x/(zy))z)y = x [axiom]
4 B/B += A\A | A(B/B) += A | (AB)C += A(BC) [denial]
5 x((y((xy)\z))(z\u)) = u [2 (1) → 2 (1.2.2.1)]
7 ((x/y)((y/(zu))z))u = x [3 (1) → 3 (1.1.1.2)]
9 ((x/y)z)(u((zu)\y)) = x [2 (1) → 3 (1.1.1.2)]
13 x((((y((xy)\z))(z\u))(u\v))(v\w)) = w [5 (1) → 5 (1.2.1.2.1)]
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15 ((x/(yz))y)((z(x\u))(u\v)) = v [3 (1) → 5 (1.2.1.2.1)]
17 x(((y((xy)\z))(z\u))(u\v)) = v [2 (1) → 5 (1.2.1.2.1)]
21 ((x/y)((y/z)((z/u)((u/(vw))v))))w = x [7 (1) → 7 (1.1.2.1.2)]
25 ((x/y)((y/z)((z/(uv))u)))v = x [3 (1) → 7 (1.1.2.1.2)]
29 ((x/y)((y/(zu))z))((u(x\v))(v\w)) = w [7 (1) → 5 (1.2.1.2.1)]
35 x(y(((z(((u/v)z)\x))y)\v)) = u [2 (1) → 9 (1.1)]
43 ((x/y)((z/(uv))u))(v(z\y)) = x [3 (1) → 9 (1.2.2.1)]
87 ((x/(y(z(u\x))))y)z = u [15 (1) → 43 (1)]
100,99 (x(((y/z)x)\u))v = ((z/y)u)v [35 (1) → 87 (1.1.1.2)]
115 ((x/y)((y/x)z))u = zu [9 (1) → 87 (1.1.1.2)]
124,123 ((x/x)y)z = yz [2 (1) → 87 (1.1.1.2)]
152,151 ((x(x\y))(y\z))u = zu [17 (1) → 123 (1.1),100,124]
153 (x(x\y))z = yz [13 (1) → 123 (1.1),100,124,152]
235 ((x/(yx))y)(z(z\u)) = u [153 (1) → 15 (1.2)]
322,321 x(y(z\z)) = xy [43 (1) → 115 (1)]
348,347 x(y(y\z)) = xz [153 (1) → 321 (1.2),322]
349 x((y/y)z) = xz [123 (1) → 321 (1.2),322]
356,355 x((y/z)((z/u)((u/(v(w\w)))v))) = xy [25 (1) → 321 (1.2)]
357 x((y/z)z) = xy [21 (1) → 321 (1.2),356]
366,365 ((x/(yx))y)z = z [235,348]
423 ((x/y)((y/(z(u/u)))z))((x\v)(v\w)) = w [123 (1) → 29 (1.2)]
437 ((x/y)\z)u = ((y/x)z)u [347 (1) → 115 (1.1)]
439 x(y/y) = x(z\z) [321 (1) → 349 (1)]
452 x(y\y) = x(z/z) [439]
518,517 (x/y)y = x [357 (1) → 365 (1),366]
520,519 (x/x)y = y [349 (1) → 365 (1),366]
521 x(x\y) = y [347 (1) → 365 (1),366]
526,525 x(y\y) = x [321 (1) → 365 (1),366]
531 x((yx)\(yz)) = z [9 (1) → 365 (1)]
534,533 x(y/y) = x [452,526]
541 x((x\y)(y\z)) = z [423,534,518,518]
551 A\A += B/B | (AB)C += A(BC) [4,534,1]
662 x\x = y/y [519 (1) → 525 (1)]
666 (x/y)((y/x)z) = z [115 (1) → 525 (1),526]
669 (AB)C += A(BC) [662.1,551.1]
907 x\(xy) = y [533 (1) → 531 (1.2.1),520]
935,934 x((yx)\z) = y\z [521 (1) → 531 (1.2.2)]
936 (x/y)\x = y [517 (1) → 531 (1.2.2),935]
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1147 (((xy)/(z(uy)))z)u = x [907 (1) → 87 (1.1.1.2.2.2)]
1166,1165 ((x/(y(zu)))y)z = x/u [936 (1) → 87 (1.1.1.2.2.2)]
1171 (xy)/y = x [1147,1166]
1173 x/(y\x) = y [87,1166]
1180 (x/(yz))y = x/z [3 (1) → 1171 (1.1)]
1386 x((x\y)z) = yz [907 (1) → 541 (1.2.2)]
1397,1396 (x/y)\z = (y/x)z [533 (1) → 437 (1),534]
1422 x(((x\y)/y)z) = z [1173 (1) → 666 (1.1)]
1650,1649 x/(y\z) = (x/z)y [521 (1) → 1180 (1.1.2)]
2213 (xy)z = x(yz) [1386 (1) → 1422 (1.2),1397,1650,520]
2215 ! [2213.1,669.1]

BQ3

1 x = x [axiom]
2 y(y\x) = x [axiom]
3 (x/y)y = x [axiom]
4 (xy)z = x(yz) [axiom]
5 B/B += A\A | A(B/B) += A | (AB)C += A(BC) [denial]
8 (x/y)(yz) = xz [3 (1) → 4 (1.1)]
20 (x/y)z = x(y\z) [2 (1) → 8 (1.2)]
21 x(y\z) = (x/y)z [20]
98,97 x(y\y) = x [3 (1) → 20 (1)]
160 (x/x)y = y [2 (1) → 21 (1)]
179 x/x = y\y [97 (1) → 160 (1)]
186 A(B/B) += A [179.1,5.1,4]
265 A += A [179 (1) → 186 (1.2),98]
266 ! [265.1,1.1]

BQ4

1 x = x [axiom]
2 y(y\x) = x [axiom]
3 (x/y)y = x [axiom]
4 x/x = y\y [axiom]
5 ((x(yz))y)u = x(y((zy)u)) [axiom]
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6 B/B += A\A | A(B/B) += A | (AB)C += A(BC) [denial]
7 x\x = y\y [4 (1) → 4 (1)]
9,8 (x\x)y = y [4 (1) → 3 (1.1)]
11,10 x(y\y) = x [7 (1) → 2 (1.2)]
15,14 (xy)z = x(yz) [8 (1) → 5 (1.1.1.2),11,11,9]
24 A\A += B/B | A(B/B) += A [6,15,1]
27 (x/y)(yz) = xz [3 (1) → 14 (1.1)]
39 (x/y)z = x(y\z) [2 (1) → 27 (1.2)]
40 x(y\z) = (x/y)z [39]
100 (x/x)y = y [2 (1) → 40 (1)]
116 (x/x)\y = y [2 (1) → 100 (1)]
123 x\x = y/y [100 (1) → 10 (1)]
124 A(B/B) += A [123.1,24.1]
127 x(y/y) = x [116 (1) → 10 (1.2)]
129 ! [127.1,124.1]

Ternary Group (TG)

TG2

1 x = x [axiom]
2 m(m(x, m(y, z, u), y), z, u) = x [axiom]
3 m(u, z, m(y, m(u, z, y), x)) = x [axiom]
4 m(m(A, B, C), D, F ) += m(A, B, m(C, D, F )) |

m(A, A,B) += B | m(B, A, A) += B [denial]
5 m(m(x, y, m(y, m(z, u, v), z)), u, v) = x [2 (1) → 2 (1.1.2)]
25 m(x, y, z) = m(x, u, m(u, m(v, w,m(w,m(v6, y, z), v6)), v))

[5 (1) → 5 (1.1)]
27,26 m(x, y, y) = x [3 (1) → 5 (1.1)]
29,28 m(x, m(y, z, m(z, m(u, v, w), u)), y) = m(x, v, w) [2 (1) → 5 (1.1)]
30 m(x, y, m(y, z, u)) = m(x, z, u) [25,29]
31 m(m(A, B, C), D, F ) += m(A, B, m(C, D, F )) |

m(A, A,B) += B [4,27,1]
35 m(x, y, m(y, x, z)) = z [26 (1) → 3 (1.3.2)]
53,52 m(x, x, y) = y [5 (1) → 35 (1.3),29]
55 m(m(A, B, C), D, F ) += m(A, B, m(C, D, F )) [31,53,1]
80 m(m(x, y, z), u, v) = m(x, y, m(z, u, v)) [30 (1) → 3 (1.3)]
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82 ! [80.1,55.1]

TG3

2 m(y, y, x) = x [axiom]
3 m(x, y, y) = x [axiom]
4 m(m(x, y, z), u, v) = m(x, y, m(z, u, v)) [axiom]
5 m(m(A, B, C), D, F ) += m(A, B, m(C, D, F )) |

m(A, A,B) += B | m(B, A, A) += B [denial]
6 ! [4,5,2,3]

TG4

1 x = x [axiom]
2 m(y, y, x) = x [axiom]
3 m(x, y, y) = x [axiom]
4 m(m(m(x, y, z), z, u), u, y) = x [axiom]
5 m(y, u, m(u, z, m(z, y, x))) = x [axiom]
6 m(m(A, B, C), D, F ) += m(A, B, m(C, D, F )) |

m(A, A,B) += B | m(B, A, A) += B [denial]
8 m(m(x, y, z), z, y) = x [3 (1) → 4 (1.1.1)]
12 m(m(x, y, z), z, u) = m(x, y, u) [4 (1) → 8 (1.1)]
17 m(x, y, m(y, x, z)) = z [2 (1) → 5 (1.3.3)]
20 m(x, y, z) = m(x, u, m(u, y, z)) [5 (1) → 17 (1.3)]
21 m(x, y, m(y, z, u)) = m(x, z, u) [20]
87,86 m(m(x, y, z), u, v) = m(x, y, m(z, u, v)) [12 (1) → 21 (1)]
90 ! [6,87,1,2,3]

Group Theory Schema (GTS)

GTS2

1 x = x [axiom]
2 ((xy)(αz))(y(αz))′ = x [axiom]
3 ((zβ)y)′((zβ)(yx)) = x [axiom]
4 BB′ += AA′ | A(BB′) += A | (AB)C += A(BC) [denial]
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5 (x(αy))((z(αu))′(αy))′ = (xz)(αu) [2 (1) → 2 (1.1.1)]
14,13 ((x(y(αz))′)y)(αz) = x [2 (1) → 5 (1)]
22,21 (((x(β(αy))′)β)α)′x = y [13 (1) → 3 (1.2)]
31 (xy)′(x(yz)) = z [21 (1) → 3 (1.2.1),22]
47 ((xy)′x)′z = yz [31 (1) → 31 (1.2)]
72,71 x((yx)′(yz)) = z [31 (1) → 47 (1)]
73 ((xy)′x)′ = y [47 (1) → 13 (1.1.1),14]
77 (x′(yz)′)′ = y(zx) [31 (1) → 73 (1.1.1.1)]
83 (x(yx)′)′ = y [73 (1) → 73 (1.1.1)]
109 x(y((xy)′z)) = z [83 (1) → 31 (1.1)]
130 ((x(yz)′)y)z = x [71 (1) → 13 (1.2),72]
140 ((xy)z)(yz)′ = x [71 (1) → 2 (1.2.1.2),72]
163 ((xy)(zy)′)z = x [73 (1) → 130 (1.1.1.2)]
264 ((xy)(zy)′)(z(x′u)) = u [163 (1) → 109 (1.2.2.1.1)]
282,281 x(y′y) = x [83 (1) → 77 (1)]
301 (xy′)y = x [130 (1) → 281 (1),282]
303 (xy)y′ = x [281 (1) → 140 (1.1),282]
407,406 (xy)z = x(yz) [140 (1) → 301 (1.1)]
465,464 x(yy′) = x [303,407]
475 x(x′y) = y [264,407,407,407,72]
499 BB′ += AA′ [4,465,407,1,1]
513 xx′ = yy′ [464 (1) → 475 (1.2)]
514 ! [513.1,499.1]

GTS3

1 x = x [axiom]
2 y(y′x) = x [axiom]
3 (xy′)y = x [axiom]
4 ((xα)y)(βz) = (xα)(y(βz)) [axiom]
5 BB′ += AA′ | A(BB′) += A | (AB)C += A(BC) [denial]
6 x′′y = xy [2 (1) → 2 (1.2)]
8 xy′′ = xy [3 (1) → 3 (1.1)]
12,11 x′(xy) = y [6 (1) → 2 (1.2)]
17,16 x′′ = x [8 (1) → 11 (1.2),12]
19,18 (xy)y′ = x [8 (1) → 3 (1.1)]
20 (xy)(βz) = ((xα′)α)(y(βz)) [3 (1) → 4 (1.1.1)]
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30 x(yx)′ = y′ [11 (1) → 18 (1.1)]
32 ((xα)(y(βz)))(βz)′ = (xα)y [4 (1) → 18 (1.1)]
39,38 (xy)′ = y′x′ [18 (1) → 30 (1.2.1)]
41,40 ((xα)(y(βz)))(z′β′) = (xα)y [32,39]
48 (x(yz))(z′y′) = x [38 (1) → 18 (1.2)]
56 (xy)(z(z′y′)) = x [18 (1) → 48 (1.1.2),17,39]
104 (xy)z = ((xα′)α)(y(β(β′z))) [2 (1) → 20 (1.2)]
111,110 ((xα′)α)y = xy [20 (1) → 48 (1.1),41]
129 (xy)z = x(y(β(β′z))) [104,111]
183,182 x(y(y′z)) = xz [56 (1) → 56 (1.1),39,39,17,17,19]
185,184 (xy)z = x(yz) [129,183]
189,188 x(yy′) = x [56,183,185]
194 BB′ += AA′ [5,189,185,1,1]
199 xx′ = yy′ [188 (1) → 2 (1.2)]
200 ! [199.1,194.1]

GTS4

1 x = x [axiom]
2 y(y′x) = x [axiom]
3 (xy′)y = x [axiom]
4 x′x = yy′ [axiom]
5 ((x(αy))β)z = x(α((yβ)z)) [axiom]
6 BB′ += AA′ | A(BB′) += A | (AB)C += A(BC) [denial]
11 xx′ = yy′ [4 (1) → 4 (1)]
12 A(BB′) += A | (AB)C += A(BC) [11.1,6.1]
13 (xx′)y = y′′ [4 (1) → 3 (1.1)]
15,14 x(yy′) = x [4 (1) → 2 (1.2)]
16 x′′ = (yy′)x [13]
17 (AB)C += A(BC) [12,15,1]
22,21 x′′ = x [2 (1) → 14 (1)]
25,24 (xx′)y = y [16,22]
28 ((xy)β)z = x(α(((α′y)β)z)) [2 (1) → 5 (1.1.1.2)]
29 (xβ)y = x(α((α′β)y)) [14 (1) → 5 (1.1.1)]
39 x(α((α′β)y)) = (xβ)y [29]
44 (xy)y′ = x [21 (1) → 3 (1.1.2)]
46 x′(xy) = y [21 (1) → 2 (1.2.1)]
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49,48 (x′x)y = y [21 (1) → 24 (1.1.2)]
59 (xy)′x = y′ [44 (1) → 46 (1.2)]
74,73 (xy)′ = y′x′ [46 (1) → 59 (1.1.1)]
105 (x′y′)((yx)z) = z [73 (1) → 46 (1.1)]
160,159 α(((α′x)β)y) = (xβ)y [48 (1) → 28 (1.1.1),49]
167,166 x((x′β)y) = βy [11 (1) → 28 (1.1.1),25,160]
173,172 x(((x′y)β)z) = (yβ)z [2 (1) → 28 (1.1.1),160]
183 x((yβ)((β′(y′x′))z)) = z [2 (1) → 28 (1),74,74,173]
195,194 (xβ)y = x(βy) [39,167]
215 x(y(β((β′(y′x′))z))) = z [183,195]
237 x(β((β′x′)y)) = y [2 (1) → 194 (1),74]
423 (x′y)((y′x)z) = z [21 (1) → 105 (1.1.2)]
502,501 β((β′x)y) = xy [237 (1) → 2 (1.2),22]
505 x(y((y′x′)z)) = z [215,502]
695 (xy)z = x(yz) [423 (1) → 505 (1.2.2),22]
697 ! [695.1,17.1]

Symmetric Difference (SD)

SD2

2 (x&(y&z))&((u&y)&(u&z)) = x [axiom]
3 ((z&u)&(y&u))&((z&y)&x) = x [axiom]
4 (A&B)&(((A&C)&(D&D))&B) += C [denial]
13 (x&((y&z)&(u&z)))&(u&y) = x [2 (1) → 2 (1.2)]
25 x&((x&(y&y))&z) = z [2 (1) → 3 (1.1)]
469 x&((x&(y&z))&z) = y [3 (1) → 13 (1)]
530 (x&((x&y)&z))&z = y [3 (1) → 469 (1.2)]
598 (x&y)&(((x&z)&(u&u))&y) = z [25 (1) → 530 (1.1.2)]
600 ! [598.1,4.1]

SD3

2 (y&y)&((z&z)&x) = x [axiom]
3 (x&(z&z))&(y&y) = x [axiom]
4 (x&y)&(z&u) = (x&z)&(y&u) [axiom]
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5 (A&B)&(((A&C)&(D&D))&B) += C [denial]
9 x&x = y&y [2 (1) → 3 (1)]
28 (x&x)&(y&z) = (u&y)&(u&z) [9 (1) → 4 (1.1)]
35 (x&y)&(z&z) = (x&u)&(y&u) [9 (1) → 4 (1.2)]
41 (x&y)&((z&z)&y) = x [3 (1) → 4 (1)]
43 (x&(y&y))&(x&z) = z [2 (1) → 4 (1)]
45 (x&y)&(x&z) = (u&u)&(y&z) [28]
48 (x&y)&(z&y) = (x&z)&(u&u) [35]
70 (x&((y&y)&z))&z = x [41 (1) → 41 (1.2)]
80 x&((x&(y&y))&z) = z [43 (1) → 43 (1.1)]
122 (x&y)&(((z&z)&(y&u))&u) = x [4 (1) → 70 (1)]
273,272 (x&x)&(((y&(z&z))&u)&v) = u&(y&v) [80 (1) → 45 (1.1)]
1740 x&((x&(y&z))&z) = y [80 (1) → 122 (1.1),273]
1875 (x&y)&(((x&z)&(u&u))&y) = z [48 (1) → 1740 (1.2.1)]
1877 ! [1875.1,5.1]

SD4

2 (x&((z&z)&z))&z = x [axiom]
3 z&((z&(z&z))&x) = x [axiom]
4 ((x&x)&(x&y))&((y&x)&(x&x)) = x&x [axiom]
5 (x&y)&(z&u) = (x&z)&(y&u) [axiom]
6 (A&B)&(((A&C)&(D&D))&B) += C [denial]
18 (x&((x&y)&((x&y)&(x&y))))&(y&z) = z [3 (1) → 5 (1)]
20 (x&y)&((((y&z)&(y&z))&(y&z))&z) = x [2 (1) → 5 (1)]
27 x&((x&y)&((x&x)&z)) = y&z [5 (1) → 3 (1.2)]
33 ((x&(y&y))&(z&y))&y = x&z [5 (1) → 2 (1.1)]
46,45 x&((x&y)&((x&z)&(x&u))) = y&(z&u) [5 (1) → 27 (1.2.2)]
50 ((((x&x)&y)&((x&x)&y))&((x&x)&y))&y = x&x [2 (1) → 27 (1.2)]
58 (x&(x&x))&(x&y) = y [18,46]
72,71 (x&x)&((x&x)&y) = y [5 (1) → 58 (1)]
96,95 (x&(y&y))&((y&y)&(y&y)) = x [4 (1) → 2 (1.1.2.1),72]
109 (x&x)&(y&(((x&x)&(x&x))&z)) = ((x&x)&y)&z [71 (1) → 27 (1.2.1)]
112 (((x&x)&(x&x))&y)&((x&x)&y) = (x&x)&(x&x) [71 (1) → 4 (1.1.2),96]
114 ((x&x)&y)&z = (x&x)&(y&(((x&x)&(x&x))&z)) [109]
122,121 ((x&x)&(y&(x&x)))&(x&x) = (x&x)&y [71 (1) → 33 (1.1.1)]
125,124 (((x&y)&(z&y))&(u&y))&y = (x&z)&u [5 (1) → 33 (1.1.1)]
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127,126 ((x&x)&(x&x))&y = (x&x)&y [4 (1) → 33 (1.1.1),122]
141,140 (x&x)&(x&x) = x&x [50,125,127]
142 (x&y)&((y&y)&y) = x [20,125]
145,144 ((x&x)&y)&z = (x&x)&(y&((x&x)&z)) [114,141]
147,146 (x&x)&(y&y) = x&x [112,141,145,72,141]
155 (x&(y&y))&(y&y) = x [95,141]
175 x&x = y&y [71 (1) → 142 (1.1),145,72,147,72]
194 x&((x&y)&(z&z)) = y&(x&x) [175 (1) → 27 (1.2.2)]
210 (x&y)&(z&z) = (x&u)&(y&u) [175 (1) → 5 (1.2)]
235,234 (x&(y&y))&(z&z) = x [175 (1) → 155 (1.1.2)]
638 (x&y)&(((x&z)&(u&u))&y) = z [194 (1) → 210 (1.1),235]
640 ! [638.1,6.1]

Symmetric Difference Schema (SDS)

SDS2

1 x = x [axiom]
2 (x&((y&z)&(y&((z&α)&v))))&v = x [axiom]
3 v&((((v&(β&z))&y)&(z&y))&x) = x [axiom]
4 (A&B)&(((A&C)&α)&B) += C | β += α [denial]
5 x&((x&(β&(y&z)))&(y&((z&α)&u))) = u [2 (1) → 3 (1.2)]
7 (((x&(β&y))&z)&(((y&z)&α)&u))&u = x [3 (1) → 2 (1.1)]
9 x&((x&y)&((((β&(β&z))&u)&(z&u))&((y&α)&v))) = v

[3 (1) → 5 (1.2.1.2)]
13 x&x = ((β&(β&y))&z)&(y&z) [9 (1) → 2 (1.1)]
14 ((β&(β&x))&y)&(x&y) = z&z [13]
46 x&x = y&y [14 (1) → 14 (1)]
60,59 ((x&x)&(((y&(z&(β&y)))&α)&u))&u = β&(β&z) [14 (1) → 7 (1.1.1)]
63 x&((x&(β&(((β&(β&(y&α)))&z)&y)))&(u&u)) = z [14 (1) → 5 (1.2.2)]
77 (x&x)&y = (β&(β&(z&u)))&(z&((u&α)&y)) [14 (1) → 2 (1.1)]
84 (β&(β&(x&y)))&(x&((y&α)&z)) = (u&u)&z [77]
87 x&((x&(β&(β&y)))&(z&z)) = y&α [46 (1) → 9 (1.2.2)]
89 x&((x&y)&((((β&(β&z))&u)&(z&u))&(v&v))) = y&α

[46 (1) → 9 (1.2.2.2)]
91 x&((x&α)&((((β&(β&y))&z)&(y&z))&((u&u)&v))) = v

[46 (1) → 9 (1.2.2.2.1)]
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97 x&((x&y)&((((β&(z&z))&u)&(β&u))&((y&α)&v))) = v
[46 (1) → 9 (1.2.2.1.1.1.2)]

99 ((β&(β&x))&x)&(y&y) = z&z [46 (1) → 14 (1.2)]
105,104 β&(β&x) = x [46 (1) → 7 (1.1.1),60]
120 x&(y&y) = ((x&(β&z))&u)&(z&u) [46 (1) → 3 (1.2)]
142 (x&x)&(y&y) = z&z [99,105]
145 x&((x&α)&(((y&z)&(y&z))&((u&u)&v))) = v [91,105]
147 x&((x&y)&(((z&u)&(z&u))&(v&v))) = y&α [89,105]
150,149 x&((x&y)&(z&z)) = y&α [87,105]
151 (x&y)&(x&((y&α)&z)) = (u&u)&z [84,105]
152 (β&(((x&α)&y)&x))&α = y [63,105,150]
167 ((x&(β&y))&z)&(y&z) = x&(u&u) [120]
169,168 β&(x&x) = β [46 (1) → 104 (1.2)]
171,170 (x&y)&(x&((y&α)&z)) = β&z [5 (1) → 104 (1.2),105]
173,172 ((x&y)&(x&y))&z = β&z [3 (1) → 104 (1.2),105]
176 x&((x&y)&(β&((y&α)&z))) = z [97,169,173]
181,180 (x&x)&y = β&y [151,171]
184 (x&(β&y))&y = x [2,171]
186 x&((x&y)&β) = y&α [147,181,169]
188 x&((x&α)&y) = y [145,181,181,105]
195,194 x&x = β [142,181,169]
210 ((x&(β&y))&z)&(y&z) = x&β [167,195]
232 (β&((x&y)&(((x&(β&z))&u)&(((z&u)&α)&α))))&α = y

[7 (1) → 152 (1.1.2.1.1)]
234 (β&(x&y))&α = ((y&α)&(β&(z&u)))&(z&((u&α)&x))

[5 (1) → 152 (1.1.2.1)]
236 ((x&α)&(β&(y&z)))&(y&((z&α)&u)) = (β&(u&x))&α [234]
248 (x&β)&β = x [194 (1) → 184 (1.1.2)]
250 (x&y)&(β&y) = x [104 (1) → 184 (1.1.2)]
254 (β&(x&α))&α = β&x [184 (1) → 152 (1.1.2)]
258 ((x&y)&(((z&y)&α)&u))&u = x&z [184 (1) → 7 (1.1.1.1),105]
272 α&(β&x) = x [194 (1) → 188 (1.2.1)]
279,278 x&β = x&α [194 (1) → 188 (1.2)]
283,282 ((x&α)&(β&(y&z)))&(y&((z&α)&u)) = x&u [5 (1) → 188 (1.2)]
287,286 (x&α)&α = x [248,279,279]
301,300 ((x&(β&y))&z)&(y&z) = x&α [210,279]
302 x&((x&y)&α) = y&α [186,279]
307,306 (β&(x&y))&α = y&x [236,283]
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308 (x&α)&(x&y) = y [232,287,301,307]
311,310 β&x = α&x [254,307]
322 ((x&(α&y))&z)&(y&z) = x&α [300,311]
337,336 α&(α&x) = x [272,311]
348 (x&y)&(α&y) = x [250,311]
364 x&((x&y)&(α&((y&α)&z))) = z [176,311]
387,386 β = α [194 (1) → 286 (1.1),311,195]
389,388 x&x = α [194,387]
390 (A&B)&(((A&C)&α)&B) += C [4,387,1]
395 (α&(((x&y)&α)&z))&z = y&x [388 (1) → 258 (1.1.1)]
398,397 (x&(y&z))&z = (x&α)&y [286 (1) → 258 (1.1.1),287]
409 ((x&y)&(z&y))&α = x&z [286 (1) → 258 (1.1.2)]
413 ((x&y)&α)&x = α&y [388 (1) → 258 (1.1)]
419 α&((x&y)&α) = y&x [395,398,389]
438 x&(α&(y&x)) = y&α [308 (1) → 348 (1.1)]
441 x&α = y&(α&(x&y)) [438]
470 (x&y)&(x&α) = (α&y)&α [348 (1) → 302 (1.2.1)]
472,471 (α&x)&α = α&(x&α) [336 (1) → 302 (1.2.1)]
476 (x&y)&(x&α) = α&(y&α) [470,472,flip.1]
497 (α&x)&(α&y) = (y&x)&α [413 (1) → 348 (1.1)]
500 (x&y)&α = (α&y)&(α&x) [497]
504,503 (x&y)&α = α&(y&x) [419 (1) → 336 (1.2)]
506,505 (α&x)&(α&y) = α&(x&y) [500,504]
523 α&((x&y)&(z&y)) = z&x [409,504]
531 (A&B)&((α&(C&A))&B) += C [390,504]
535 x&y = α&((y&z)&(x&z)) [523]
551,550 (x&(α&y))&z = (x&α)&(α&(y&z)) [322 (1) → 348 (1.1)]
566,565 x&(α&((y&z)&x)) = α&(z&y) [441 (1) → 503 (1)]
668,667 (x&y)&(α&((y&α)&(x&z))) = z [476 (1) → 364 (1.2.1),504,337,506]
735,734 (α&x)&y = α&(x&(α&y)) [336 (1) → 505 (1.2)]
785 (A&B)&(α&((C&A)&(α&B))) += C [531,735]
891 C += C [535 (1) → 785 (1.2.2),735,735,551,566,337,337,668]
892 ! [891.1,1.1]

SDS3

1 x = x [axiom]
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2 (y&y)&(α&x) = x [axiom]
3 (x&β)&(y&y) = x [axiom]
4 (x&y)&(z&u) = (x&z)&(y&u) [axiom]
5 (A&B)&(((A&C)&α)&B) += C | β += α [denial]
7,6 α&(α&x) = x [2 (1) → 2 (1.1)]
8 (x&x)&y = α&y [6 (1) → 2 (1.2)]
10 (x&β)&β = x [3 (1) → 3 (1.2)]
13,12 x&(y&y) = x&β [10 (1) → 3 (1.1)]
16 x&(y&z) = (α&y)&((α&x)&z) [6 (1) → 4 (1.1)]
26 (α&β)&x = α&x [8 (1) → 8 (1.1),13]
29,28 α&β = β [10 (1) → 8 (1)]
31,30 (x&y)&(x&z) = α&(y&z) [4 (1) → 8 (1)]
33,32 β&x = α&x [26,29]
37,36 x&x = β [8 (1) → 10 (1.1),29,33,29]
41,40 β = α [28 (1) → 10 (1.1),37]
44,43 x&x = α [36,41]
50,49 (x&α)&α = x [10,41,41]
51 (A&B)&(((A&C)&α)&B) += C [5,41,1]
71 (α&((A&C)&α))&((α&(A&B))&B) += C [16 (1) → 51 (1)]
95 ((α&(A&C))&α)&((α&(A&B))&B) += C [16 (1) → 71 (1.1),44,44]
97 (C&B)&(α&B) += C [4 (1) → 95 (1),31,31,7]
99 C += C [4 (1) → 97 (1),44,50]
100 ! [99.1,1.1]

SDS4

1 x = x [axiom]
2 (x&((z&z)&z))&z = x [axiom]
3 z&((z&(z&z))&x) = x [axiom]
4 ((x&x)&(x&y))&((y&x)&(x&x)) = α [axiom]
5 (x&y)&(z&u) = (x&z)&(y&u) [axiom]
6 β = α [axiom]
7 (A&B)&(((A&C)&α)&B) += C | β += α [denial]
46 (((x&x)&(x&x))&((x&x)&(x&x)))&α = α [4 (1) → 4 (1.2)]
49,48 ((x&x)&(y&x))&((x&y)&(x&x)) = α [5 (1) → 4 (1)]
51,50 α&α = α [46,49]
65 (α&(α&x))&((x&α)&α) = α [50 (1) → 4 (1.2.2),51]
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68,67 α&(α&x) = x [50 (1) → 3 (1.2.1.2),51]
70,69 (x&α)&α = x [50 (1) → 2 (1.1.2.1),51]
73,72 x&x = α [65,68,70]
104 x&((x&α)&y) = y [3,73]
106 (x&(α&y))&y = x [2,73]
110,109 (x&y)&(x&z) = α&(y&z) [72 (1) → 5 (1.1)]
152,151 (x&y)&(α&y) = x [104 (1) → 106 (1.1.2),73]
163 x&(α&((y&α)&x)) = y [104 (1) → 151 (1.1)]
181 x&(α&(y&x)) = y&α [106 (1) → 163 (1.2.2.1),73]
246,245 (x&y)&α = α&(y&x) [151 (1) → 181 (1.2.2),110]
248,247 α&((α&x)&y) = x&(α&y) [106 (1) → 181 (1.2.2),246]
276 (A&B)&((α&(C&A))&B) += C [7,246,6]
288 C += C [5 (1) → 276 (1),73,246,248,152]
289 ! [288.1,1.1]
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